
Math 31 - Homework 2 Solutions

1. [Saracino, Section 2, #1 (a), (b), (h), (i)] Which of the following are groups? Why? (That is,
either verify that the axioms hold, or explain why one of them fails.)

(a) R+ under addition. (Here R+ denotes the set of all positive real numbers.)

(b) The set 3Z of integers that are multiples of 3, under addition.

(c) R− {1} under the operation a ∗ b = a + b− ab.

(d) Z under the operation a ∗ b = a + b− 1.

Solution. (a) This is not a group. In particular, there is no identity, since 0 6∈ R+.
(b) This is a group. Addition clearly gives an associative operation on 3Z, and 0 ∈ 3Z, so it

possesses an identity as well. Finally, if a = 3m ∈ 3Z, then −a = 3(−m) ∈ 3Z as well, so every
element has an inverse.

(c) This is a group. The operation is associative: if a, b, c ∈ R− {1}, then

(a ∗ b) ∗ c = (a + b− ab) ∗ c
= (a + b− ab + c)− (a + b− ab)c

= a + b + c− ab− ac− bc + abc,

while

a ∗ (b ∗ c) = a ∗ (b + c− bc)

= a + b + c− bc− ab− ac− abc.

The identity element is 0, since

0 ∗ a = a ∗ 0 = a + 0− a · 0 = a

for all a ∈ R− {1}. Finally, the inverse of an element a is −a/(1− a), since

a ∗ −a
1− a

= a +
−a

1− a
+

a2

1− a
=

a− a2

1− a
+
−a

1− a
+

a2

1− a
= 0.

(d) This is also a group. The operation is associative, since if a, b, c ∈ Z, then

(a ∗ b) ∗ c = (a + b− 1) ∗ c = (a + b− 1) + c− 1 = a + b + c− 2,

while
a ∗ (b ∗ c) = a ∗ (b + c− 1) = a + (b + c− 1)− 1 = a + b + c− 2.

Also, the identity element is 1, since

1 ∗ a = a ∗ 1 = a + 1− 1 = a

for all a ∈ Z. Finally, given a ∈ Z, the inverse is 2− a, since

a ∗ (2− a) = a + 2− a− 1 = 1.
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2. [Saracino, Section 2, #5] The following table defines a binary operation on the set S = {a, b, c}.

∗ a b c

a a b c

b b b c

c c c c

Is 〈S, ∗〉 a group?

Solution. No, 〈S, ∗〉 is not a group. The identity element is a, but note that b and c do not have
inverses, since there is no x ∈ S such that b ∗ x = a or c ∗ x = a.

3. [Saracino, Section 2, #8] Let G be the set of all real-valued functions f on the real line which
have the property that f(x) 6= 0 for all x ∈ R. In other words,

G = {f : R→ R : f(x) 6= 0 for all x ∈ R}.

Define the product f × g of two functions f, g ∈ G by

(f × g)(x) = f(x)g(x) for all x ∈ R.

With this operation, does G form a group? Prove or disprove.

Proof. G does indeed form a group. First, G is closed under ×, since if f(x) 6= 0 and g(x) 6= 0
for all x ∈ R, then f × g(x) = f(x)g(x) 6= 0 for all x ∈ R. The operation × is associative, since
multiplication of real numbers is associative: for all x ∈ R, we have

(f × g)× h(x) = (f × g)(x)h(x) = (f(x)g(x))h(x) = f(x)(g(x)h(x)) = f × (g × h)(x),

so (f × g) × h = f × (g × h) for all f, g, h ∈ G. The identity is given by the constant function
1 : R→ R, where 1(x) = 1 for all x ∈ R, since

f × 1(x) = f(x)× 1(x) = f(x) · 1 = f(x)

and similarly 1× f(x) = f(x) for all x ∈ R. Finally, if f ∈ G, then the function f−1(x) = 1/f(x)
(note that this does not mean the inverse function, just the reciprocal) exists (since f(x) 6= 0 for
all x) and lies in G, so

f × f−1(x) = f(x) · 1

f(x)
= 1 = 1(x)

for all x ∈ R. Therefore, G is a group.

6. If G is a group in which a ∗ a = e for all a ∈ G, show that G is abelian.

Proof. To show that G is abelian, we need to show that for any a, b ∈ G, ab = ba. Let a, b ∈ G;
then a2 = e and b2 = e. Also, we have (ab)2 = e, so we can compute as follows:

ab = aeb = a(ab)2b = a(ab)(ab)b.

Using associativity to regroup, we have

(aa)(ba)(bb) = a2(ba)b2 = e(ba)e = ba.

Therefore, ab = ba. Since a and b were arbitrary elements of G, we have shown that G is abelian.
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Extra credit: We saw in class that any group of order 1, 2, or 3 is abelian. Show that any group
of order 4 must be abelian. [Hint: Try to write down all the possible group tables in this case. Up
to reordering the elements of the group, there will only be two possibilities.]

Proof. To do this, we’ll write down the possible group tables for a group of order 4. We claim that
there are only 2 possibilities. Suppose that G is a group of order 4, and write the elements as

G = {e, a, b, c},

where e represents the identity. Each of the three nonidentity elements must have an inverse, and
there are two ways to do this. We can either pair off two of the elements to be inverses of each
other, while the third is its own inverse, say

a2 = e

bc = e

The other option is to make all three elements equal to their own inverses, i.e.,

a2 = b2 = c2 = e.

In the first case, let’s assume that a = a−1, or a2 = e. Then we must have ab = c and ac = b.
(We can’t have ab = b, since this would imply that a = e, which we are assuming is not the case.)
Similarly, we’ll have to have ba = c and ca = b. In this case the group table looks like:

∗ e a b c

e e a b c

a a e c b

b b c a e

c c b e a

In the second case, we assume that a, b, and c all square to e. As before, we must have ab = c,
ac = b, ba = c, and ca = b. The only things left to deal with are bc and cb. These must both equal
a (since we can’t have bc = b or bc = c, etc.), so the group table looks like:

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

In either case, it is easy to check via the table that the group in question is abelian. [Note: There
are actually other possible group tables. In the first case we made a choice regarding which element
would square to e, and we chose a. By choosing either b2 = e or c2 = e, we could have written
down two slightly different group tables. However, they can both be obtained from the one we
wrote down by simply rearranging the group elements.]
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Extra extra credit: Try to extend the extra credit problem by showing that any group of order
5 must also be abelian.

Proof. Let G be a group of order 5, and suppose to the contrary that G is nonabelian. Then there
are two elements a, b ∈ G which do not commute. Then e, a, b, ab, and ba are all distinct elements
of G, and since G has only five elements, these are all the elements of G. We claim that a2 is not
on this list. If a2 = e, then we have

a ∗ e = a

a ∗ a = e

a ∗ b = ab

a ∗ (ab) = a2b = b

and by process of elimination,
a ∗ (ba) = ba.

However, this last equation forces a = e, which is absurd. Next, a2 6= a, since this would also imply
that a = e. If a2 = b, then a and b would commute, which we have assumed is not the case. Finally,
if either a2 = ab or a2 = ba, then a = b, which is again absurd. Therefore, we have produced a
sixth distinct element of G, which only has five elements. This is a contradiction, and since the
only thing we have assumed is that G is nonabelian, it must be the case that any group G with
|G| = 5 is abelian.
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